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LETTER TO THE EDITOR

QCD heat kernel in covariant gauge

E I Guendelman†, A V Leonidov‡, V A Nechitailo†‡ and D A Owen†
† Physics Department, Ben Gurion University, 84105 Beer Sheva, Israel
‡ P N Lebedev Physics Institute, 117924 Moscow, Russia

Received 9 October 1995

Abstract. We report the calculation of the fourth coefficient in an expansion of the heat kernel
of a non-minimal, non-Abelian kinetic operator in an arbitrary background gauge in arbitrary
spacetime dimension. The fourth coefficient is shown to bring a non-trivial gauge dependence
due to the contribution of the lowest order off-shell gauge-invariant structure.

In this letter we continue a programme of studying the quasiclassical expansion of the heat
kernel of the gluon kinetic operator considered in the arbitrary spacetime dimension and
arbitrary covariant gauge started in [1]. The importance of studying the heat kernel and
its quasiclassical expansion is due to the important role it plays in quantum field theory
and mathematical physics. In quantum field theory a heat kernel is a unique device for
computing the Green functions and the one-loop quantum corrections to the classical action
of the theory (effective action) in the case of an inhomogeneous background field. This, in
turn, helps to perform an efficient calculation of charge renormalization and anomalies [2].
The method also provides a possibility of performing an infinite resummation of the
quasiclassical expansion and the corresponding contributions to the effective action [3].
In mathematical physics the heat kernel is a central object in the spectral geometry of
manifolds. Its quasiclassical expansion generates the invariants of the manifold with respect
to the symmetry transformations of fields and gauge connections defined on it (see e.g. [4]).

Physically, the heat kernel is a way of describing the propagation of the eigenmodes of
the system under consideration. As is well known, the particular feature needed to determine
a non-Abelian theory is the necessity of getting rid of the unphysical degrees of freedom
by fixing a gauge. This leads to a gauge-dependent description of the propagation of the
physical degrees of freedom, and, correspondingly, to a gauge-dependent heat kernelK(s)

K(s) = exp(−Ws) (1)

where W is an inverse propagator of a non-Abelian gauge boson (which is actually a
covariant Laplacian on the manifold characterized by the external gauge connections, see
below) ands is the proper time. In the following we shall consider the case of massless
gauge bosons (QCD gluons). The non-trivial application of the heat kernel arises when one
considers a propagation of the quantum gluons on the manifold characterized by external
gauge connections (external non-Abelian fields). The trace of a heat kernel then depends
on the invariants constructed from these external fields and the question to be studied is the
interplay between the gauge dependence of a heat kernel and various structures (invariants)
appearing in its expansion. As it follows from the results presented below, the resulting
structure is non-trivial.
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Calculational method

We begin by introducing the basic notation. To do this, let us consider a second-order
elliptic operatorW on the 2ω-dimensional manifoldM. By definition the heat kernel
operator corresponding toW is obtained by its exponentiation as given in (1). We shall
be interested in the expansion of the trace of the matrix elements of the heat kernel taken
at one spacetime point. For the second-order operator this expansion has the form (see,
e.g., [2]):

Tr〈x|K(s)|x〉 =
∞∑

k=0

b−ω+k(W, ω | x)s−ω+k (2)

where the coefficientsb−ω+k are the so-called Seeley coefficients. These coefficients are
the invariants of the manifoldM and the trace of the heat kernel can be considered as a
generating function for these invariants.

For the specific case of a non-Abelian gauge theory the kinetic operator for gluons
propagating in the external non-Abelian field and considered in the arbitrary covariant
background gauge has the form

Wab
µν = −D2(A)abδµν − 2f acbGc

µν −
(

1

α
− 1

)
Dac

µ Dcb
ν (3)

whereα is a gauge-fixing parameter,f abc are the structure constants of the corresponding
Lie algebra,Da

µ is a covariant derivative containing the external field potentialAµ andGµν

is the corresponding field strength. The Seeley coefficients are thus, generally speaking,
also the functions of a gauge parameter

Tr〈x|e−Wab
µνs |x〉 =

∞∑
k=0

b−ω+k(Gµν, ω, α | x)s−ω+k (4)

and are invariant with respect to the gauge transformations of the external field potentials
Aa

µ. To calculate the functional trace in (2) we shall use the basis of plane waves (see,
e.g., [5, 6]):

Tr〈x|e−Ws |x〉 = Tr
∫

d2ωp

(2π)2ω
e−ipx〈x|e−Ws |x〉eipx

where the trace is performed over the Lorentz and colour indices. The exp[ipx] should be
pushed through the operator to the left then cancelled by exp[−ipx]. This has the effect
that all differentiation operators inW becoming shifted:∂µ → ∂µ + ipµ. Thus we have

Tr e−Ws = Tr
∫

d2ωp

(2π)2ω
e−sW(∂µ→∂µ+ipµ)1 (5)

where the operator in the right-hand side of (5) acts on 1. For calculational purposes it is
convenient to separate this operator into the parts having zero, first and second order in the
external field correspondingly:

W(∂µ → ∂µ + ipµ) = W0 − iW1 − W2
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where

Wνν
0 = p2

(
P

µν

⊥ + 1

α
P

µν

‖

)
P

µν

⊥ = δµν − pµpν

p2
P µν = pµpν

p2

Wµν

1 = 2pαDαδµν + β(pµDν + pνDµ)

Wµν

2 = D2δµν + 2Gµν + βDµDν β ≡ 1

α
− 1 .

(6)

In the above expression we have suppressed the colour indices, which could be trivially
restored, for example,Gµν → Gab

µν = f acbGc
µν .

To obtain the expansion of this operator ins we use ordinary perturbation theory:

Tr e(−W0+iW1+W2)s = Tr K0(s) + Tr(K0(s)(iW1 + W2)) +
∫ s

0
ds1(s − s1)

× Tr(K0(s − s1)(iW1 + W2)K0(s1)(iW1 + Ws2)) + · · · (7)

whereK0(s) is the free propagator

K0(s) = e−Wµν

0 s = e−sp2
(P

µν

⊥ + e−sβp2
P

µν

‖ ) . (8)

The expressions for the Seeley coefficients are obtained by collecting the terms of a
given order in covariant derivatives.

Next we shall apply the above described method to calculate the fourth Seeley coefficient
for the gluon kinetic operator in the backgroundα-gauge.

Fourth Seeley coefficient inα-gauge

We start with recalling the first three Seeley coefficients [1]. They have the following form:

b−ω = N2
c − 1

22ωπω
(2ω − [1 − αω]) (9)

b−ω+1 = Nc

22ωπω
(2ω − [1 − αω−1])

0(ω) − 0(ω + 1)

0(ω)/ω
Aa

µAa
µ ≡ 0 (10)

b−ω+2 = Nc

22ωπω
(2ω − [1 − αω−2])Ga

µνG
a
µν . (11)

The fourth Seeley coefficient corresponds to collecting the contributions of the sixth
order in the covariant derivatives. In this order there exist two gauge-invariant structures.
These are

G3 ≡ f abcGa
µνG

b
νρG

c
ρµ I3 ≡ (Dab

µ Gb
µν)(D

ac
ρ Gc

ρν) .

The second invariantI3 is non-zero only for the fields that do not obey the classical equations
of motion, i.e. off-shell. The expression for the fourth Seeley coefficientb−ω+3 reads

b−ω+3 = − Nc

22ωπω

[
1

180

(
2ω − [

1 − αω−3
])

(G3 − I3) + 2
3I3 + ξ(ω, α)I3

]
(12)

where

ξ(ω, α) = 1

12ω(ω − 1)(ω − 2)

{
10ω2 − 25ω + 6 − 6

α

1 − α
(2ω − 1) + αω−2

1 − α
[2ω(ω − 1)

+ω(11− 2ω)α + 3(ω − 2)α2]

}
. (13)
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This expression is the main result of our letter. We see that it is indeed gauge invariant.
The most interesting property of the above expression is its dependence on the gauge fixing
for quantum gluons, i.e. itsα dependence. First of all, one immediately sees that in the
limit α → 1 (Feynman gauge) the functionξ(ω, 1) equals zero identically for anyω and
for ω = 2 the remaining part ofb1 coincides with that obtained in [6] in this particular case.
Let us note that functionξ(ω, α) also does not have poles at anyω and the corresponding
limits are

ξ(0, α) = − 1

24

{
2

α2
− 9

α
+ 13+ 6

ln(α)

(1 − α)

}
(14)

ξ(1, α) = − 1

12

{
2

(
1

α
+ 2

)
+ 3

ln(α)

(1 − α)
(3 − α)

}
(15)

ξ(2, α) = 1

12

{
3(7 − α) + 2

ln(α)

(1 − α)
(2 + 7α)

}
. (16)

From a physical point of view the expressions (14) and (15) do not make any sense but they
show that ‘explicit’ poles in (13) are not the actual poles. In fact, the functionξ(ω, α) reflects
a non-trivial off-shell contribution tob−ω+3. Its dependence onα andω is complicated and
at this moment we do not have any further comments on its structure.

The second important property of the coefficientb−ω+3 is that the on-shell contribution,
which is proportional toG3 is proportional to the factor 2ω − [1 − αω−3]. A comparison
with the expressions for other coefficients (equations (9)–(11)) shows that the on-shell
contribution to the heat kernel in ordern contains a universal factor 2ω − [1 − αω−n]. A
very plausible conjecture is that this is valid for all terms in the heat kernel expansion. As
was shown in [1], this corresponds to the appearance of the contributions proportional to
the lnα in the ζ -regularized gluon contribution of the effective action.

Conclusion

Following the line of research described in our previous paper [1] we have calculated the
fourth coefficient in the quasiclassical expansion for the trace of a heat kernel operator
for the kinetic operator for a non-Abelian gauge boson in an arbitrary background gauge
and arbitrary spacetime dimension. The new coefficient is of the sixth order in the
covariant derivatives with respect to the background field gauge-potentials and is the first one
containing two different invariants with respect to gauge transformations of the background
field. One of the invariants is an on-shell one(G3 ≡ f abcGa

µνG
b
νρG

c
ρµ), and another one

(I3 ≡ (Dab
µ Db

µν)D
ac
ρ Gc

ρν)) is an off-shell one, i.e. it vanishes for the external fields obeying
classical equations of motion. The structure of the coefficient corresponding to the on-shell
contribution is proved to follow the pattern seen in the previously calculated coefficients
(see [1]). The off-shell contribution is found to be a complicated function of the quantum
gauge fixing parameter and the spacetime dimension.

The results obtained in this letter are of considerable importance for the analysis of the
general structure of the contributions to the effective action. In particular, it is important to
understand the structure of the heat kernel expansion and the corresponding contributions
to the effective action at finite temperature (i.e. on the cylindrical spacetime manifold).
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